IMM-NYU 326
June 1964
New York University
Courant Institute of Mathematical Sciences

NON-LINEAR THEORY FOR THE DEFORMATION OF PRE-STRESSED
CIRCULAR PLATES AND RINGS

Chester B. Sensenig

This report represents results obtained at the Courant
Institute of Mathematical Sciences, New York University,
with the National Aeronautics and Space Administration,
Grant NsG-412, and the Office of Naval Research, Contract
Nonry-285(42) .

Reproduction in whole or in part is permitted for any
purpose of the United States Government.



Non-Linear Theory for the Deformation of Pre~Stressed
Circular Plates and Rings

1. Introduction

It has been conjectured by Professor J.J. Stoker that
solutions to non-linear elasticity problems are generally
smoother in some sense than solutions to the corresponding
linear problems. More specifically, if the solution to the
linear problem has a singularity, the conjecture is that the
solution to the non-linear problem will in many cases not have
a singularity. Professor Stoker suggested that pre-stressed
circular plates and rings would be examples of this phenom~
enon. It was this suggestion which led to the investigation
pPresented here.

It is known that in the linear theory under the assump-
tion of plane stress if a circular plate or ring is pre-
stressed by slitting it and inserting a wedge or by deleting
a wedge and welding the ends together, then the stress normal
to a plane through the axis has a singularity at the center
in the case of the plate, and in the case of the ring this
stress on the inner curved lateral surface goes to infinity
as the inner radius goes to zero. This is presented for the
plate in [1], and it can be seen in the case of the ring
from [2].

Since plane strain problems are more convenient in the

non-linear theory than plane stress problems, we make here a



comparison between the plane strain results of the two theories.
In addition we derive the circular plate and ring into which
the pre-stressed circular plate and ring respectively, deform
when hydrostatic pressures are applied to thelr curved lateral
surf;;;é. In the case of the ring different hydrostatic pres-
sures are permlitted on the two curved lateral surfaces. We
also observe how the stress normal to a plane through the axis
as computed from the non-linear theory reduces to that of the
linear theory when the pre-stressing and applied hydrostatic
pressures are small.

In addition to imposing the equilibrium equations and
using the stress-strain laws to obtain boundary conditions, we
require that the Jacobian of the deformation 1s positive, ex-
cept at isolated points or curves, for both the linear and
non-linear treatments. This is a natural condition in the
non-linear theory, but 1t is usually omitted in the linear
theory since in deriving the linear theory 1t is assumed that
the displacements and thelr derivitives are small, making the
condition superfluous. However, for the linear problems con-
sidered here, there are arbitrarily small values of certain
strain and stress parameters for which the Jacobian is not
positive for some values of other parameters. This can happen
since the assumption of small derlivatives of displacements is
violated for some values of the parameters in the problem.
Hence the positive Jacobian condition is not superfluous in

the linear treatment of these problems.



For the pre-stressed circular plate 1t 1s shown that the
stress normal to a plane through the axis is finite, although
large, at the center when the non-linear theory 1s used. When
the linear theory 1s used, there does not exlst a pre-stressed
plate of the type considered here obtailned by deleting a wedge,
but, when the plate 1s pre-stressed by lnserting a wedge, the
stress under consideration is infinite at the center of the
plate. Thus the conjecture is confirmed in this Instance.

For the type of pre-stressed circular ring considered
here letting the inside radius go to zero after the pre-stress-
ing is fixed 1s not permitted in the non-linear theory 1f the
ring is pre-stressed by inserting a wedge, and it is not per-
mitted in any case in the linear theory. It 1s the positive
Jacobian condition which prohibits letting the inside radius
go to zero. Hence no comparison of limits for the two theories
is possible for any fixed pre-stressing. However, in the non-
linear theory when the 1limit of the stress under consideration
can be taken, it 1s finite.

It is shown that the discrepancy between the linear and
non-linear theory results is due to the approximation
r& = 1 +¢ log r .If.r2 rr :_rl > 0 for some constants ry,Ty
the approximation is arbitrarily good for le| small enough.
However, 1f € 18 fixed, the approximation becomes arbitrarily
bad as r —> O no matter how small is the value of |e| .

A special strain energy density is used in deriving the

non-linear theory results. No approximations are made in the



non-linear theory. The material described by thls strain energy
density function is homogeneous and isotropic, and the strain
energy density agrees for small strains with that of the linear

theory.

2. The Non-Linear Theory
The notétion used here is that of Fritz John [3]. We
simply 1list the desired results without proof. Consider a fixed
rectangular Cartesian reference frame X . A particle at the
point (xl’xe’XB) in the undeformed body goes to a point
(_’51’33253) in the deformed body. We think of X; as a func-
tion of the variables xJ and let
Bii
(2.1) Piy = 3% -
J

Let W be the strain energy density function of the mate-
rial. W 1s taken to be a function of the variables x, and

piJ , and we let

oW

Then from [3] the equilibrium equations are

oq

(2.3) ?ﬁ}i = 0

J

1f the body forces are zero. The usual sumation convention is

used.



Let T = (tl’tz’tB) be the surface traction vector
acting on the boundary of the body where ti is given in

terms of force per unit deformed area. Then from [3]

das

where (nl,nz,nB) is the unit outer normal vector to the
undeformed boundary and dS and dS are the elements of
area on the undeformed and deformed boundaries respectively.
Let p be the matrix (pij) , and let ¢ be the unique
rotation matrix such that c¢*p 1s symmetric and positive de-
finite (* denotes the transpose). Such a rotation matrix c
exists if det p > O which we now assume. Then c¢ 1s called
the local rotation matrix since c¢ rotates the directions of
principal extension in the undeformed body into those in the

deformed body (see discussion of ¢ 1in [#]). Hence we list

(2.5) c*c¢c =1, detc =1, c*p 1s symmetric and positlve
definite.

It can be shown that c*p = /p¥p , the symmetric positive
definite square root matrix of p¥*p . For the strain matrix

1 We use

(2.6) n = c¢*p -1 = /PFp - 1.



Then the eigenvalues of 1 are the stationary values of
ds/ds - 1 where ds and ds are arc length in the unde-
formed and deformed bodies respectively.

For the strain energy density function W we choose

(2.7) W o= %[n]2 + uln?)

where A and p are the Lamé constants and the square
bracket denotes the trace of the matrix. W agrees for
small strains with the strain energy density of the linear
theory for a homogeneous 1sotropic materlal.

From [4] we have

(2.8) ayy = (Mnl - 2ueyy + 2up,y

3. Tensor Formulation
Since we will be working in curvilinear coordinates
(cylindrical coordinates), we introduce tensor methods for
convenience. ILet 91,92,93 be curvilinear coordinates such
that det (axi/aej) >0 . In the table below the left and

right columns present the notation used for the X-components

and 6-compoents of the same covarient tensor,



X-components 6-components

®13 81
E Uy
P1y P13
01J CiJ
N1y By
ay Q,
ty Ty
ny Ny

We define the quantittes g'd by (g'Y) - (gij)'l and

use the quantities gij and giJ to lower and ralse the

indices of the €-components of tensors in the usual way
i _ ik
J ;7 Bk

section 2 become the following:

(1.e. Pt = gikPk plK ote.). Then the results of

(3'1) P = u

1] i|j

where IJ denotes covarient differentlation with respect to

eJ using the quantities gij as the components of the metric
tensor
oW
(3.2) Q =
iJ apij

(3.3) QiJIJ =0



(3.4) ™ - Q”NJ das
as
(3.5) CkiCkJ = Gi , det (Cij) > 0, (CkiPkJ)is symmetric and
positive deflnite
k

(3.6) Eij = Cp,P 5 " 8y

- A gind 1.
(3.7) W= 5 EiEJ + uEJEi
(3.8) Q' = gl - anctd 4 atd

4. The Pre-Stressed Ring under Hydrostatic
Pressures (Non-Linear)
It will be convenient to use cylindrical coordinates

r,6,Z given by X, = Tr cos e , Xy =T sin 6 , x3 =2 . At
first consider the part of a circular ring which in the unde-
formed state occuples the region r{y2riry, o = 6 < a,,
2] < h . We ask if for each choice of the constants € > -1 ,
P1 , P2 » Ty r2 , there 1s a function f(r) independent of
oy and oy such that the deformation

(4.1) X, = f(r) cos (1 + €)6, = f(r) sin (1 + €)6, X, = 2

Xy 3

has positive Jacoblan and satisfies the equilibrium equations .
(3:%) swith



hydrostatic pressures of a¢P1 and EuPe applied to the
boundaries r = r,,r, respectively. The units of euPl

and 2uP2 are force per unit deformed area. We will show
that the answer to this question is yes, 1f Pl’PQ’E’ and
r,/r, are restricted sultably, and that the force distri-
bution on the surfaces 6 = Q5,0 is normal to the de-
formed surfaces. Hence when € < O we can obtain a stress-
ed ring with hydrostatic pressureé of EuPl and a4P2 on
the inner and outer curved lateral surfaces respectively by
weldin~> together two such pleces. Suitable pieces would be
one for which o = O,a2 = 2r and one for which a, = ar,
oy = er/l+e . Also when € > O a stressed ring with
hydrostatlic pressures of EuPl and QuP2 on the lnner and
outer curved lateral surfaces respectively can be obtained
by welding together the ends of the plece for which o, = 0,
a, = 2r/1+e . If we take P, =P

2 1 2
are calling a pre-stressed ring. If we take P, Z 0 or

= 0 , we obtaln what we

Py £ O , we obtain the ring into which the pre-stressed
ring will deform under hydrostatic pressures 2p.P1 and
P, .

Before proceding with the calculation, we outline the
work. First the positive Jacobian condition 1s (4.la). Sub-
stituting the deformation (4.1) into the three equilibrium
equations of the non-linear theory, we obtain one ordinary
second order differential equation for f . The general
solution of this equation is linear in the constants of

intezration A and B (see (4.15)).



10

Usingz the stress-strain laws of the non-linear theory,
the condition that hydrostatic pressures of a¢Pl and a¢P2
are applied on the curved lateral boundarles reduces to two
linear equations, (4.21), in A and B . We want the deter-
minant D of thils system of equations to be non-zero in or-
der that A and B are determined uniquely. Since D > O

when € = P, = P2 = 0 and rp, > ry , We make the requirement

1
D> 0 for all values of e,Pl,Pz,rl, and r's considered.
This 1s (4.23).

Assuming D > O , then (4.la) implies (4.25) and (4.26)
where k = rl/r2 . Conversely, D> 0 , (4.25), and (4.26)
all together imply that the Jacoblan 1s positive. These
conditions are summarized in (4.27), and, when the parameters
€,P1,P,, and k satisfy (4.27), there is a unique f such
that the deformation (4.1) satisfies all the conditions we
have 1mposed,

We want to be able to build the pre-stressed ring be-
fore we apply the hydrostatic pressures to the curved laferal
surfaces. That 1s, we want (4.27) to be satisfied when
P, = P, = 0 . This gives (4.28) as a new restriction on e
and k . (4.28) is always satisfied if € > 0, i.e. 1if the
ring is pre-stressed by deleting a wedge. But 1f -1 < e <0,
(4.28) 18 not satisfied unless k 1is near enough to one.

That 1s, the ring can not be pre-stressed by inserting a wedge

unless the ring is thin enough.
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Once € and k are chosen so that (4.28) is satisfied,
then (4.27) becomés restrictions on the hydrostatic pressures
only. For the values of P, and Py satisfying (4.27)
there is a unique f such that (4.1) satisfies the equilibrium
equations, the boundary conditions, and the positive Jacobian
condition.

Since (4.28) is always satisfied when € > 0 and
0 < k=<1, we can take limits as r, — 0 1n the pre-
stressed ring if the pre-stressing is done by deleting a wedze.
Since (4.28) is not satisfied when -1 < € <0 wunless k 18
near enouzh to one, we can not take limits as r, — 0 in
the pre-stressed ring il the pre-stressing is done by inserting
a wedze. We do not discuss the problem of taking limits as
ry — 0 1if the pre-stressed ring is first loaded further
by taking P, or P, # 0 . That problem could be solved by
further study of (4.27).

The surface traction vector acting across a plane through
the axls of the ring is derived and 1s observed to be normal

to the deformed plane. Its magnitude 1s 2uT where T 1is

given by (4.30). It is shown that lim T(rl) = -1 when
r,~>0
1

€ > 0, so that this force has a finite limlt when we can

let r'1 — 0 .

We now present the details of the work. The Jacobian
of (4.1) 1is l%ﬁ ££' . Since we are restricting € so that
€ > -1 , the positive Jacobian condition implies f and !

are not zero and have the same sign. Since f 1s the distance
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from the axis of the deformed ring to a particle in the ring,

we have f > O , Hence the positlve Jacobian condition becomes

(4.1a) f>0, f'>0 for ry 2 r 2 ory, .

We make the identification 06, = r,62 = 6,93 = Z . Then

1
cos 6 -r sin 6 0 1
(Bxi) (391) (ax 1) -
=|sin 6 rcos & O y  |l=— = <
0 0 1
(4.2)
cos 6 sin 6 0
= - %vsin e = cos 6 0 .
0 0 1
ox,\* [ox
i 1 iJ -1
Since (gij) (893) (59;) and (g v) (Dij) ’
1 0 0 1 0 0
(4.3) (gg) = |0 ** o], (& o % o], @
r
°c o 1 o 0 1
The nhon-zero Christoffel symbols are
2 2 1 1
(%.5) M=l a=5, MNa=-1.

Hence



(4.5)(P13)= (ut] )

and

( 1j
Alj'; dA 1

24
(1.6) < A%, ggj s 1

3J
A3J|J _ oA !

\ - BBJ r

for any contravarient tensor

From (4.1) and (4.2)

From (4.5) and (4.7)

1 1l
du ou
36 - ™ Z
2 2
2 ou 1 du
4 S Y 3
2’ du’
90 3z
a1l | 22
A31
ald
= % sin €6, w = Z

15
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( f' cos €6 -(1l+e) f sin €6 0
(P;J) = %; sin €0 (1+e)~§ cos € 0]
0 0 1
(%.8) < f' cos €6 -(1+s)-£% sin €@ 0
r
(PiJ) =(P?kgk3) -%L sin €6 (1+e)'f% cos €6 o]
\ 0 0 1

For a plane strain deformation the rotation matrix ¢

has the form

cos ¥ ~-8in ¢
¢ = 8in ¥ cos ¥ 0
0 0 1

where ¥ 1s the local rotation angle. Using this with (4.2)

we obtain
cos ¥ -r 8in ¥ 0
(4.9) (Cij) =| r sin ¢ r° cos W 0 .
0 0 1

From (4.9) and (4.8)
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f' cos (y-€98) (1+e)f sin (y-€b) 0

(4.10) (cC pK )= {-rf' sin (y-€6) (1+e)rf cos (y-€0) o |.

ki
0 0 1

Since (3.5) determines the quantitiles CiJ uniquely, we
see from (4.9) and (4.10) that it suffices to choose ¢ = b .

Then (ckipkj) is symmetric and positive definite by (4.1a).
Hence
cos €6 -r sin €6 0
( _ 2
(cij) =(r sin €6 r° cos €6 0
0 0 1
(4.11)< 1
cos €6 -3 sin €6 0
13y ik 8, . |1 1
6C )=(g" 8" C, )= |5 sin €6 = cos €6 o
0 0 1

From (%4.10) and (3.6)

’ £1-1 0 0
(Eij) = 0 (1+€)rf-r 0
0 0] 0
(4.12) <
k f
Ek = f!' + (1+€) T 2
\

From (3.3) and (3.8) the equilibrium equations are
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3EK
(4.13)  (AE[ - aJ)CiJlJ + a,mihJ + A —X ¢ld

= 0.
BGJ

From (4.6),(4.8), and (%.11)

’PIJ]J = [en o+ 1. (HE )2¢] cos €8
S 142 12¢) s1n es
(h.14) JPP| =0
ClJIJ = - % cos €b
CaJI = - J% sin €6
3J d

Substituting into (4.13) from (4.12) and (4.14), only

one differential equation for f 1is obtained, namely

1 4, 14+ 2. _ _ €
S A Ml ¢ oY b

where ¢ is Poisson's ratio.

The general solution of this equation is

(4.15) f = L r + AritE 4 —%L—
(2+e)(1-0) ( r tE

where A and B are constants of integration.

From (4.15) and (4.12)
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/
! = TE 11_ [l + (1+€) (AI‘E - —§B+—€) ]

r
(4.16) <
k 2A(1+e) e  1-2(0
LB T ey T T T

On the boundaries r = r,,r, we have d3 = (1+€)fdédZz and
dS = rdédZ . On r = ry, we have n, = cos 9,n2 = sin 6,

= Q0 so that N

l,N2 =N, =0 . Similarly on r = rys

"3 1 3
N, = -l,N2 = N3 = 0 . Therefore from (3.4)

i _ r il
T° = - 11577 ¢ for r =1
(4.17)
1 r 11
T" = fIreyr ¥ for r=ry -

The unit outer normal vectors to the deformed boundaries
r =r),r, are jx (cos (l+e)8,sin (1+€)6,0) respectively.
Hence the requirement that hydrostatic pressures of a¢P1 and
aJ.P2 act on r = rl,r2 respectively are
(tl’tz’tj) = 2uPl(cos (1+e)6,sin (1+e)8,0) for r = ry and
(tl’te’tj) = -a¢P2(cos (1+e)08,81in (1+€)6,0) for r = ry .

From these conditions and (4.2)



/ 1 T
T = 2p,P1 cos €b
2 aLPy
T = +— 8in €6 & for r =r,
P = 0 j
(4.18) 4
T - -2uP, cos €6 )
-2P
T2 = 2 sin €6 r for r = Ty
3 -
\T 0 J

’ E(1l+e)P 3\
11 a €. B
Q™" = - 1+Ar + cos €0
(2+€) (1~ 0°%) ( r§+€)
E(1+€)P .
(4.19)J el - - et 14Ar%+ —2_\1 sin €6 Vror r=r (0=1,2)
(2+e)(l-0’2) ‘r2+€ r s a
31
\ & =0 /

where

Thus (4.17) and (4.18) together with (4.15) give

E 1s Young's modulus.

From (3.8),(4.8),(4.11), and (4.16)

18
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11 _ _ E(1+e)
(2+€)(1- £°)

A € B
[-14'-1-_—_—2—-(;'? -;m—é]cosea

21 E{1l+e)

(4.20) < Q" = -1 +‘I‘%’" r - ~%i— L sin eo
(2+e) (1- g 2) [ e ret€ | T
31
Q" =0
\
Hence (4.19) and (4.20) give
(1-P_)B
1 £ a
(4,21) (P + 1z 2‘5.)1&1’- - "_;QIE' =1-P, for a=1,2 .
a

The determinant D of coefficients of the system of
equations (4.21) (considering A and B as unknowns) 1s

2
) +€ [(P2 N T"—o"' )(1- P )r2+2e

D =
(flre
(4.22)

- (P + W )(1 P2)I'2+28]

In order that A and B are uniquely determined we

require D#£ 0O . When € = P, = Py, =0,D>0 since r, > ry .

In order that we can deform continuously from the unstressed
ring to the stressed ring having A and B always uniquely

determined, we must therefore require that D > 0 for all

r
P ,Py,e > -1, and ?l considered. This restriction is
2

l)

1 1 2+2¢
(4.23)(P2+ T:EB:)(I-PI) (P1+ T—_ﬁ’)(l -P ) ( 2) '
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From (4.21)

1 1 1
A = §(1-P) (2-Po)f—57 - ~ote
1 To

(4.24) <

(B = 3[(py+ ph) (1pp)rt- (e ) (1-prf |

We have yet to impose the conditions (4.1a). From (4.15)

2 2+€ B
and (k.24%) (2+e)(1- (0 )r f(ry) = ri+Ar] T E
i 2+€
”'ﬁ 1-0'(1_p2)L}_ {:z) } , and  (2+€)(1- T )r,f(r,)

(1) 2+E
= %‘1‘]:‘5%(1'?1) (—;%) -] . Since € > -1,0 <( < %’

ry < L and D> 0, then f(r) > 0 for ry *r<r,

implies the restrictions

(4.25) P. <1, P2 <1.

r
Let k = Fl so that 0 <k <1 . From (4.16),(4.22)

2+¢

e 2 B
and (4.24) (2+e)(1-<T)rlf’(rl) & +(1+e)(Ar - = )
1

2+e+1+e)

- ,113{( Pot toag) (1-P)R+e) 1S (B + ) [1-P,) (K
+(1+s)(1—P1)(1-P2)(1-k2+€)}-. Hence ff(rl) > 0 4implies
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2+e+1+e)

(Pt Topgr) (1-P1) (2+€)K™E (P + y—5pe) (1-Pp) (K
(4.26)

+(1+e) (1-P) (1-P,) (1-k5¥€) > 0 .

So far we have shown that (4.25) and (4.26) are necessary
for (4.1a) when (4.23) is imposed. We now show that (4.23), (4.25)
and (4.26) are sufficient. 1Inequality (4.26) gives £'(ry) > 0
as already shown. But (4.23),(4.2%), and (4.25) imply A > O so

that f'(rl) >0 and (4.16) gives

2+¢

r 2+¢€
1 242e_ r 24+2¢ € B
B < e +Ar1 :-—TiE +Ar ,1+(1+e)(Ar - ;ﬁiE) >0,

and f'(r) > 0 all for rpSr<r,. We have already restricted
P2 so that f(rl) >0 . This with f'(r) > 0 implies that
f(r) > 0 for r<r < ro

Using (4.25), we can rewrite (4.23),(4.25), and (4.26) as

1 1
"ot 1o, Put Toaw esee

(#.27) ¢ I-P, I-F;
P2+'T:%Er -E Pl+'I?%B’ 2+¢ 2+
T, (2+e)k™" > —=q—5== (k° +1+e)-(1+e) (1-k"77).

In order that we can pre-stress the ring before applying
hydrostatic pressures, we want (4.27) to be valid for

P, = P, =0 . This gives the additional restriction

1 2

(4.28)  (2+e)k"€ > [14(14e)(1-20) 1ketE42 07 (14€) .
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To see if (4.28) is trivial, we let
g(k) = [1+(14e)(1-207) JK2 C4207 (14+€)-(24€)k"E for O < k <1,
€ > -1 . Then (4.28) becomes g(k) < O . First conslder the
case € > 0, Then g'(k) = (2+e){[1+(1+e)(1-20‘)]k1+e
+ek"1'e} >0 so that g(k) 1s a monotonically increasing
function of k . Since also g{l-) = 0 , we have g(k) <O
for 0 <k <1l,e > 0, and the restriction 1is automatically
satisfied.

Now consider the case -1 < e <0 . Then
g' (k) = (2+e)(1+e){[1+(1+e)(1-20‘)k8-ek'2’e} > 0 . Hence
g'({k) 1s a monotonically increasing function of k for
0<k<1. Since g'(0+) = -0 and g'(1l-) = 2(2+e)(1+e)(1-0)>0,
there is a unique % such that 0 <k <1 and g'(k) <0 for
0<k=<%,g'(k) >0 for T<k<1. Hence g(k) has a minimum
at k = kK and is monotone in the intervals 0 < k < k,k < k < 1
Since g(1-) = 0 and g(0+) = 20 (1+e) > O , there is a unique K
such that O < k' <% and g(k) >0 for O <k <k ,g(k) <0
for k* <k <1

Hence (4.28) is trivial for € > O , but when -1 <& <0,
(4.28) is not satisfied if k 1is too close to zero. In other
words our criteria always permit pre-stressing the ring by delet-
ing a portion and welding the ends together; but they do not per-
mit pre-stressing by adding a piece unless the ring is thin
enough. Thus if € < 0 , we can not let ry—> 0 after fixing e.
After fixing € and k so that (4.28) is satisfied, we may

regard (4.27) as restrictions on Pl and P, alone.
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1 .
Since (P + T:ERFJ/(I-P) is a monotonically increasing
function of P for P <1, if '?l and ?2 are any values
Fal
satisfying (4.27), then Fl and P, also

of P and P

1 2
A A

satisfy (4.27) for all P, such that ?2 =Pyl Also

as P1 —>1- , we must have P2 —> 1- 1n order that Pl

and P satisfy (4.27). Hence in the P1P2- plane, (4.27)

2
is satisfied in a region of the type shaded in Figure 1.

This completes the proof that the transformation given
by (4.1),(4.15), and (4.24) satisfies the equilibrium equations,
boundary conditions on r = rysTss the positive Jacobian
condition, and that it 1s possible to deform continuously
from the case Py = P, = 0 to the case P £ 0 or Py £ 0
holding € fixed provided that Pl,Pe,e > -1, and k satisfy
(4.27) and (4.28).

Before proceding it is interesting to note what would be
obtalned if we had not required that it be possible to go from
the unstressed ring to the stressed ring with f determined

uniquely at each step. When D 0 , equations (4.21) do not

have a solution unless P1 = P2 =1 and in that case there 1is
a one parameter continuwum of solutions., When D <0, A

and B are given by (4.24), but now the conditions f(rl) > 0,
>1,P, > 1 . Hence in the P,P,~ plane,

1 2 1°2
the regions corresponding to solutions with D >0 and D <O

f(r2) >0 4imply P

meet only at the point Pl = P2 = 1 . Hence it is not possible
to go from solutions with Pl < 1,P2 < 1 to other solutions

varying Pl and P2 continuously unless we go through the



] ////////// /-
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point Pl = P2 = 1 where the solution is not uniquely determined.
The case Pl = P2 = 1 does not correspond to a buckled solution
in the usual sense of the term since a continuum of solutions
is possible when P1 = P2 =1

Proceding with the solutions we are admitting, we next
show that the surface traction vector on 6 = a,a is

2
normal to the deformed surfaces. On 6 = a2 we have

dS = drdZ,dS = f'drdZ, and ©® = (-sin 6,cos 6,0) . Hence
_ _ _ i 13 1 r Ai2
Ny =Ny =0,Ny=r, and T° =Q NJ~TT = 7 Q from (3.4).

Using (3.8),(4.8),(4.11),(4.15), and (4.16), the preceding becomes

(Tl = 20T sin €6
(4.29) J T8 - oy 208 €9
3 _
\ T = 0
where
A £ B 1
T ¥ *t L2te ~ T3E
Ar~- - +
2+e T I3E

Using (4.29) and (4.2), the surface traction vector T~

-> -
is T = 2uT(-sin (1+€)6,cos (1+€)6,0) = 2uT 11 where n is
the unit outer normal vector to the deformed surface. Hence

the surflace traction vector is normal to the deformed boundary
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and 21T is the normal component of stress on the deformed
boundary 6 = Ay -
A similar argument is valid for the boundary 6 = oy

We have yet to show that 1lim T(rl) is finite when the
rle-o
ring is pre-stressed by deleting a wedge (i.e. when ¢ > O,

P, =P

1 o = 0). Actually we will show that 1lim T(rl) is

finite whenever we can let ry — 0 while holding e,Pl,
and Pe fixed. We have already shown that we can let
rl —> O while holding € fixed positive and Pl = P2 =0 .

Determining which other values of €,P and P2 can be

l,
used in this limiting operation would require further study
of the inequalities (4.27).

For convenience let

(4.31) c, =

From (4.22) and (4.24)

E
_ 2+2¢ T2
[0 = (cy-ck ) (1-2)) (1-B,) —2
1
ore
(4.32) % A= K 5I0E j?
CQ-Clk rs
E
B - Gk Co o4

\ C.-C k2+2€ 1

2 1
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Substituting into (4.30) from (4.32)

€
kK 2+€ 2+2€
({1-k )+c k&-c (c )
(4.33)  T(r,) = 1220 2” 1_
1 ke(l k2+e) C K +C —(c 2+26)
ot 1+e 2-Cqk
Hence
1+Cl(1—20')
(1_?'63)11_.(:1) if -1 < e <0
(4.34) lim T(rl) =
ry->0 ;1o ero

Since the stress 1s 2uT, we see that these limits are

very large.

5. The Pre-Stressed Circular Plate under
Hydrostatic Pressure (Non-Linear Theory).

Consider the part of a circular plate which in the undeformed
state occuples the region O < r < R,0.< 6 < a2,|Z| <h. We
aslt if for each choice of the constants € > -1,P,R there 1is a
function f(r) independent of a; and o, such that the
deformation (4.1) has positive Jacobian except at isolated points
or curves and satisfies the equilibrium equations with a hydro-
static pressure of 2P applied to the boundary r = R . Again
the answer 1is yes under suitable restrictions, and the force
vector on the surfaces 6 = a,,0, is normal to the deformed
surfaces so that stressed circular plates can be formed Just as

for the c¢ircular ring case.
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The differential equation for f 1s the same as in the
circular ring case so that £ is given by (4.15). However,
since in this case we want f to be finite for r = 0 , we
must take B = O . Then (4.16) also remains valid for B = 0 .

The consideration of boundary conditions is similar to

that of the ring case and the equation for A 1s

(5.1) (P + 137 JAR® = 1-P .

-1
This has a solution only if P # 1-57 - The require-
ment that we can go continuously from the case € £ 0,P = 0
to the case € # O,P £ 0 by varying P continuously while
holding e fixed is

(5.2) P > T:ﬁ: .
Then
( A o 1P g€
gy
1-2G

_ r 1-P €
(5.3 < ) T TERITY [1 T ]

1-20

l+e 1 1-P rE
£'{r) = T [1+a o1 (g) ]
SPY-Todd
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The positive Jacobian requirement is f(r) > O and

f'(r) >0 for O < r <R which glves

/
P<1 for e <20
(5.4) <
Il + 1-P >0 for >0 .
+€ P+ 1
\ I-EO'

Hence it is always possible to go continuously from the
pre-stressed plate to the pre-stressed plate under pressure
2.P by continuously changing P . That is for the circular

plate we can always build the pre-stressed plate first and then

load it by applying pressure. A € 1
r-_—
Defining T(r) as before we have T(r) = I-Ea; I 1+e
Ar+T+—8

by letting B=0 in (4.30). Hence

7

-1 if € >0

(5.5) 1im T(r) =
r->0

‘IZ%B’ iIf -1<e<0 .

In any case 1lim T(r) exists and is finite.
r->0

6. The Pre-Stressed Ring under Hydrostatic
Pressures (Linear Theory).

let f=1r +F and assume F and € are so small

their products can be neglected. Then (4.1) becomes
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(6.1) El = (r+F)cose—eresin6;22 = (r+F)sin6+sr6cose,'§3 =Z

We will show that F can be chosen so that (6.1) is an
exact solution to the ring problem using the linear theory
provided only that !el,lPll, and IP2| are small enough.

The rectangular components of displacements are

(6.2) Xy-X; = Feosf-erésinb,x,-x, = Fsin6+erecose,x3-x3 =0 .

Letting the quantities vi be the cylindrical components

of the contravarient displacement tensor, we have from (4.2)
and (6.2)

(6.3) vi o= F,v2 = ee,v3 =0 .

Hence (4.5) and (4.3) imply

P! -eré 0 F! - = 0

i _ | €8 1 i Jy _ | €@ €, 1
(6.4) (v lJ) = | = e+ F 0 J(vY) = - ?4-;.5 P O
0] 0 0 o o) 0

Let E1J be the cylindrical components of the contra-
varient linear strain tensor so that EI9J = %(vi|3+vjli).

Then



P! 0 0

(6.5) (') = |o 5—2+-13F 0
r r

0 0 0

The cylindrical components of the contravarient stress
tensor are TiJ = kEEgiJ + 21.LE1J so that the equilibrium

equations Tijlj = 0 become

(6.6) xaEi .t = o
. -é-e—Jg J = .

But from (6.5) and (4.6)

(Eg = P + % F+ €
(6.7 B, =B" +%F‘-;}2F--§—‘
\E IJ E IJ o .

Hence the only non-trivial equilibrium equation 1is

B+ % F' - £§ F = l&%ér -% » and the general solution

is
_ 1-20
(6.8) F = m er log r + Ar + 7

From (6.8)

21
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( 1-20 B
F!' = BT e(log r + 1) + A - ;?

K _2
EX =’§%T5%;T e(2logr+1) + 28 + ¢

(6.9) <

€ 1- A B
MY I (log r + Tfﬁg; ) + T5F - ;?

The boundary conditions are TiJNJ = -aiPzNi for r = Ty

1J - i _ - - =
and 7t NJ = a¢P1N for r = ry - Since Nl = l,N2 = N3 =0
for r = ry and N1 = -1,N2 = N3 =0 for r= rys these
become 11 - -axPa,Tel = 131 =0 for r = ra(a = 1,2). Hence
A B _ -€ 1-06
(6.10) mo_,—' - -r'? = W (log r’a +T:§—6:- ) - Pa,a = 1,2 .
a

The unique solution to (6.10) 1is

2 '
e 1-20- k"log ry-log r, (1-2(7)(k2Pl—P2)

A=-~-5+ € +
2 " 2(1-0) 1-K2 1-k2

(6.11)
I‘2 €

- 1

The positive Jacobian condition is (1+F')(1+-§ + £)+£°6°>0.

For this to be true for € = 0 we must have (1+F’)(1+-§ + €) > 0.

This means that 1+F' and 1+-% + € are not zero and have the

same sign. When r; and r, are fixed and Iel,IPll, and |P2|

1
are small enough, both quantities are positive. Since we want

to admit all small enough Iel,lPl!, and |P2|, we must require
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F
1+‘I—'+€>0

(6.12)
i1+ F' >0
N
for all E’Pl’PE’rl’ and Ty admitted.
~ From (6.8),(6.9), and (6.11) we obtain

2
(1-20)(k"Py-P,)+P; -P,
2 2

F(r,) :
17 _ _E ¢ log k

ry 1-k° 1-k

(1.2
(1-2¢ ) (k Pl-Pe)-Pl-i-P2

g 1 log k
! (1"1)=-T__—F € (—é + —-—5—2 + .

F(rl)
Hence 1lim = = -00 when € > 0 and 1lim F'(rl) = -
rl—>O 1 rl->0

when € < O . Hence (6.12) does not permit taking limits as

ry — 0 when e,Pl,Pg, and r, are fixed, and we can not

make comparisons with such limits taken in the non-linear theory.

On the surface 0 = ae,Nl = N3 = Q0 and N2 = r . Hence

Ti = TiJN = r112,T1 = 'I‘3 = O,T2 = rraa, and the surface traction

J

vector is normal to the undeformed surface. Defining T by

2
™ = 2u™N!, we have T = 5= T = 5 72 and

() e re(kelog rl-log r2)+rflog kj?

T(r) = I=77 1+log r+ —

(6.13)
2,.2 2

r°(k Pl—P2)+r1(Pl—P2)

+ -
r2(1-k°)
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To conclude we observe that if f~¢,f'-1, and T(r) ,
as computed from the non-linear theory in section 4, are
expanded in power series in e,Pl, and P2 , the terms up
to firat order give exactly the values of F,F', and T(r)
computed here with the linear theory. The important differ-
ences between the results of the two theories 1s due to the
approximation re =1+ € log r . This approximation is
arbitrarily good for |e| small enough provided that
0 < rl_: r < rs where rysry, are fixed; however, for €
fixed the approximation becomes arbitrarily bad as r —> O.
Hence we do not expect agreement between the linear and
non-linear theories when ry is small enough 1if ra,e,Pl,

and P2 are fixed.

7. The Pre-Stressed Circular Plate under
Hydrostatic Pressure (Linear Theory).

Again we consider the deformation (6.1). The differential
equation for F 18 the same as before so that (6.8) is the
general solution. Requirinz F to be finite for r =0
gives B =0 . The boundary condition is (6.10) with

B=0 and r, and Pa replaced by R and P . Hence

(A

--% -'?%%%%;T € log R - P(1-2(7)

(7.1) -J F r[ --% +»§%%%%;7 e log % - P(1-2(T)]

" oo L g 1-207 r _ _
\F-— we‘FﬂI_—o:—)—ElOg-ﬁ P(l?ﬂ-)
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Conditions (6.12) apply for O < r <R. From (7.1)

F _ £ 1-20 r
1+?+E—1+§+W€10gﬁ'P(1‘26‘) »

1+F'=l——§-(-f‘;:—0:—)-€+§](;—1—?%__)-8108§—P(1-20—)-

Since these are monotone functions of r, (6.12) is equivalent to

requiring these expressions to be non-negative for r =0 and

positive for r = R . Hence
£ <0
(7.2)  <e<20) 1o pr-20))

e > 2[pP(1-20)-1]

Thus the pre-stressing can not be done by deleting a wedge (e>0).
Observe that whenever |P| 1is small enough there exists &€

values satisfying (7.2)
2

2
e 22 . 1 2
For T = %E T°° = -%E [AE;gez + 24uE 2] we have
£ r
(7.3) T —-P+m—)‘(1+1°g§) .

Thus T has a singularity at the origin although it does not in
the non-linear ftheory.

Azain the results of the non-linear theory agree with the
results of the linear theory to first order terms in € and P, and
the differences in the results of the two theories is due to the

approximation re =14+ € logr .
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